Unijunction Transistor Circuit

By G8MNY

(Unijunction transistors are strange animals, not often found they have 2 bases that are on the same bar of silicon with an emitter in the middle. They exhibit a -ve impedance characteristic emitter to base 1 & as such easily form simple oscillators. But as they are slow devices they are not useful for radio work.

TIMEBASE

Here is an example of a Unijunction transistor used for a simple timebase from 5 sec period to 20 Hz, for higher speeds change C1 for 0.1uF or 10nF.

+12V ───┬─────────────┐
 │ 100Û _n_
 │ 2M N │ b2/.

VARIABLE UJT b2 │ 2N │ . │
 │______ ├───┘ 2646

1u === e ├────┬───> Pulse O/P Base View

HOW IT WORKS

When C1 charges up to the trigger voltage of the UJT, it fires & discharges the C1 producing a voltage spike on the Base 1. The 1000 is for protection of the load & UJT.

PRACTICAL MAINS LIVE STROBE CIRCUIT

/+340V

Fuse o───┤ │ "Nitrogel" | |├──────────────────────┐ │
1A | │ │ Pulse Cap |o| │
1N /_
On/Off ─o │ │ Variable N │ ├───┬─┤├─┐ │
4007 /_ │ │ │ UJT │ SCR_│_ │ │ │
 100u│ │ │ │ 68k 1W 68k │
 56k───┐_ ├─┘ 2N _/_ │8 │ 5kV
 350V│ │ _│_ │
 2646 /│ │)|(Pulse
250Û │ │ /_ ' 1u │ ├─┬──────┬┘ │ 100k)|(25:1
10W │ │ │18V === │ 470Û │ │ │ │
 └─────┴──┴───┴───────────┴──────┴──────┴──┴───┴────┴───┘

G4APL GB7CIP 7.11.2018
This strobe circuit uses the UJT pulse circuit to trigger a small SCR that discharges a 250V ul cap into an pulse ignition transformer (small highly insulated coil). The AC pulse of the 0.1uF & Transformer, the brief gate trigger pulse & the low current through the 68k insure the SCR can't remain on between pulses. The 100k limits the trigger circuit voltage to 200V.

This stepped up high AC voltage spike applied to the outer trigger electrode starts up a discharge in the 50W strobe tube that discharges the special pulse capacitor that was charged up to 680V DC.

The whole circuit is mains live & housed in a well earthed metal box with plastic shafted pot & main switch frame mounted off the case.

The large coiled strobe tube is at the prime focus of a reflector (car headlight sized reflector). Smaller power tubes can be used just change the 8uF for a smaller value to suit the tube flash & continuous power ratings.

\[\text{Strobe Energy} = \frac{1}{2} CV_s - \frac{1}{2} CV_d , \text{Where } V_s = \text{start volts, } & V_d = \text{discharged Volts.} \]

But as \(V_s \) is much larger than \(V_d \), the \(V_d \) component can be ignored.

\[\frac{1}{2} \times 8 \times 10^{-6} \times 680 \times 680 \ = 1.85 \text{ Watts/Pulse (Jules)} \]

But @ 20 Pulses per second that is 37 Watts! Hence the 50W rating of the tube.

The common photographic flash gun tubes, are over run at 100x brighter than strobe tubes & last only a few thousand flashes as they suffer immense thermal shock at each flash.

Strobe tube flashes for several tens of million of flashes!

Why don't U send an interesting bul?

73 De John, G8MNY @ GB7CIP